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ABSTRACT are represented by a two-fold expansion in scaling

A new approach to the simultaneous modelin Offunctions and wavelets. Using only scaling functions
W app imu u NG Ol a1lows correct modeling of smoothly-varying electro-

ZETLIJ(:SOSZ%U?rgotrh(ijsew;eseram‘jﬂ?g teq(:zc?rrc;:rtrjll; erllirt?gr\':lz\'/smagnetic fields and material parameters. In regions
propagation through psehiconductor deviges i mod?Nlth strong field variations additional basis functions
eled by using interpolating wavelets. The solution is (Wavelets) are introduced. In our derlvat|_ons, we Uuse
developed in the time-domain Exaimples of deviced special clas_s of wavelets, namely the interpolating
and circuit simulations are preéented wavelets. This vyavelet system has already been_ ap-
. plied to the solution of boundary problems for partial
differential equations (PDE). For this type of wavelets,
INTRODUCTION the evaluation of differential operators is simplified
Highly packed modern integrated circuits consistdue to the simple representations in terms of cubic
of closely spaced active and passive devices, withPolynomial functions in the space domain.
many levels of transmission lines and discontinuities. Several different approaches for solving PDE using
The circuit performance may be adversely affectedwavelets have been considered. Jameson [6] used
by the high density, due to unwanted effects such agvavelets for finding where to refine the grid in a fi-
crosstalk, caused by coupling, surface waves, and uridite difference method. It has been noticed by several
intended radiation, to name just a few. Evidently, care-authors that nonlinear operators such as multiplication
ful circuit designs must be developed based on adare too computationally expensive when done directly
vanced design tools that consider all the circuit el-in @ wavelet basis. There were several attempts to
ements simultaneously, including the active devicesdeal with this problem. Keiser [7] has used Coif-
the passive components, the radiation elements an@an wavelets to get approximations of point values
the package. The possibility of achieving this global in a wavelet method, thus simplifying the treatment of
circuit modeling was demonstrated in [1]-[2]. nonlinearities. In this paper we will foII_oyv the i_dea of
Recently, a new category of orthogonal systemsHolmstrom [8] to deal with nonlinearities using the
“orthogonal wavelets”, has appeared on the sceneSO called Sparse Point Representation (SPR).

The wavelet expansion has proven to be an efficien
method in the approximation of functions. Different tMO[EJESI]wg |ﬁ'l|:'ES|§pM(I)(|Eg'|I'\|Iﬁg(\:/J§/IE|_DEET\gCES

classes of wavelets have been used to analyze the pas-
sive circuit components. For example, Daubechies The idea behind using a wavelet basis is that cer-
wavelets have been employed in [3] for the analysis oftain functions are well compressed in such a basis. It
microstrip floating structures. In [4] the wavelet ex- means that few basis functions are needed to repre-
pansion method based on periodical wavelets in consent a function with a small error. For example, con-
junction with the boundary element method has beersider a function which is represented Bypoints on
applied for the analysis of multiconductor transmis- a uniform grid, and the same function is represented,
sion lines. with the same errof, by N, wavelet coefficients, for

To achieve the desired global modeling approach,N, < N. We would like to be able to compute deriva-
we employed wavelet functions for modeling of ac- tives and multiply functions in this wavelets basis in
tive semiconductor devices. In this paper we consideiO(N,) time. The interpolating wavelet transform pro-
the application of multiresolution analysis for semi- vides the means to achieve this goal. The chosen basis
conductor device modeling. The use of scaling func-has the property that each wavelet coefficient corre-
tions and wavelets as a complete set of basis functionsponds to a function value at a grid point. This is a
is called multiresolution analysis [5]. To derive a new key element of the method, since we have a fast algo-
algorithm, the potential distribution inside the semi- rithm to move between the physical space, where the
conductor and the electron and hole current densitiesomputations are made and the wavelet space, where
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we choose the point to include in our SPR by thresh- U U
olding the wavelet coefficients. 1 0

Modeling of non-linear semiconductor devices e.g.
transistors or diodes produces functions (carrier con-
centrations and potential distribution) that are smooth
almost everywhere in the domain except in small re-
gions of sharp variations near p-n junctions. We would
like to use a nonuniform grid, which is fine around
sharp variation locations and coarse in areas where the
solution is smooth. Application of the SPR may give \ p - substrate
us an opportunity to consider our grid as a dynamic
object which is fully integrated into the solution. A
nonuniform grid becomes fully adaptive. Changes in
the grid follow the changes in the solution on each
time step.

Fig. 1. ldealized crossection of a silicon abrupt diode.
STATEMENT OF THE PROBLEM

The basic physical model consists of three cou- In order to solve the drift-diffusion equations, it is
pled partial differential equations: Poisson equationconvenient to express all variables (the potential, the
for the electric field and two continuity equations for electron and hole densities, current densities, electron
electrons and holes. They are supplemented by thand hole mobilities) in terms of scaled quantities.
expressions for the electron and hole current densi- The spatial discretization is done by a scheme of
ties. Since the goal of this paper is to demonstrateScharfetter-Gummel type.
the wavelet's potential and to simplify the analysis,

the drift-diffusion approximation is used in the current TRANSIENT SOLUTION
density expressions. The mathematical model consists |n scaled form, the basic semiconductor equations
of Poisson’s equation can be written as
277 9 _
\% U__Z(N(I_Na +p_n) (1) gl(Uanap)_ 0
gQ(U, n,p) =0 (6)
The electron and hole carrier concentrations are found g3(U,n,p) = 0

from the continuity equations
where vectordJ, n, p are now the SPR of the normal-

on lv 3 =0 @) ized electrostatic potential and carrier concentrations.
ot ¢ " In our calculations we will follow the modified
Gummel iterations The resulting system of ODE can
op 1 be solved by the ODE solver. We use the fourth order
otV I =0 (3 Runge-Kutta method for the solution.
The iterative procedure to solve the problem (6), can
and the electron and hole current densities be presented in seven steps:
1. Setinitial values for the functiomandn and fix
Jo = qun(E)nE +¢D,Vn (4) a threshold valué.
J, = qup(E)pE — ¢D,Vp (5) 2. Obtain SPR fop, n andU.
3. Solve the FD approximation of the Poisson’s
It remains to specify boundary conditions for a par- equationg; and obtain SPR for the potential.

ticular geometry. Figure 1 shows a representative ex- 4. Make one step in the continuity equatignfor
ample of a two dimensional crossection of a silicon n using Runge-Kutta method and using the po-
abrupt diode. The potential, and electron and hole car-  tential from the previous step.

rier concentrations satisfy appropriate initial, bound- 5. Repeat previous step in the continuity equation
ary and interface conditions. In general, there are g3 for p.

semiconductor/conductor interfaces (contacts), semi- 6. Update all SPRs.

conductor/isolator interfaces and outside boundaries. 7. Goto 2.
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The basic difficulty in the solution of the transient
system is the requirement that the numerical method
must be unconditionally stable.

NUMERICAL RESULTS

Example 1. Consider a silicorp — n junction in
Figure 2. The volume concentration of the implanted

Potential (V)

Y

-0.8

p - region 3 n - region -1.0 -0.5 ) 0.0 0.5 1.0
I Distance (um)
N, | Ng , o N
! Fig. 4. The potential distribution for an abrupt silices »
X junction at zero external bias.
'1um Oum 1u m

Fig. 2. Siliconp — n junction. old parametes. As we have mentioned before, the

acceptorsN, = 5 x 10%¢m=3, the volume concen- _small_er parameter leads us to the finer mesh and more
tration of the implanted donomj, = 1 x 1015cm,~3,  teration stepsto reach the steady state.
The resulting electron and hole concentrations for an Example 2Consider an abrupt* — p diode in 2D
abrupt siliconp — n junction with zero external bias &S YOU can see on the Figure 1. The structure is of
are presented in the Figure 3. The potential distri-2#m % 2pm with contacts of lengtt0.5um on the
upper left and right of the device. The doping concen-
tration under the left contadf; = 1.482 x 106 em =3
R — (n-type region has a square shapelpfn x 1u). In
. e e omion| the substrate we assumé, = 1.482 x 10*° ecm™3
] (p-type). Figures 5 and 6 show us the distribution
of the electron concentration and the corresponding
mesh. The number of nodes in the mesHlig. Fig-
ures 7 and 8 show us the distribution of the hole
concentration and corresponding mesh. The number
of nodes in the mesh i827. The number of iter-
ations is aboutil000. The above meshes have been
adapted with the threshold parameies 10.0%. In
contrast, the full mesh of the uniform grid consists of
s = - o 5 1089 nodes. The cor_nputat_ions are compar(_ed to sim-
' ' Distance (um) ' ' ulations results obtained with the full mesh in the re-
finement limit. The number of iterations in numerical

_ _ o _experiments was in the range [i00-5000 for differ-
Fig. 3. Electron and hole carrier concentrations in a siliconent values of the threshold parameter

p — n junction.
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Simulation results were compared also with the re-
sults from the ATLAS simulator. They are compara-
ble, though not exactly identical, due to the slightly
. ] Myifferent physical parameters, like the intrinsic den-
the figures that all components of the solution have_; i

. . : sity, mobilities.
their own meshes. In case of the potential this mesh
is quite coarse. Numerical calculations show that we
need several hundred iteratioffeom 250 to 400) to REFERENCES
get a steady state solution of the equations. The num{]  c-N Kuo, B.Houshmand and T. Itoh, “Full-Wave Analysis

ber of iterations depends on the value of the thresh-  of Packaged Microwave Circuits with Active and Nonlinear
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Fig. 5. The electron concentration for a 2D abrupt diodeFig. 7. The hole concentration for a 2D abrupt diode with
zero external bias.

Fig. 6. Grid points of the electron concentration for a 2D Fig. 8.
abrupt diode with zero external bias.
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