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ABSTRACT

A new approach to the simultaneous modeling of
semiconductor devices and all the circuit elements is
discussed in this paper. The electromagnetic wave
propagation through semiconductor devices is mod-
eled by using interpolating wavelets. The solution is
developed in the time-domain. Examples of device
and circuit simulations are presented.

INTRODUCTION

Highly packed modern integrated circuits consist
of closely spaced active and passive devices, with
many levels of transmission lines and discontinuities.
The circuit performance may be adversely affected
by the high density, due to unwanted effects such as
crosstalk, caused by coupling, surface waves, and un-
intended radiation, to name just a few. Evidently, care-
ful circuit designs must be developed based on ad-
vanced design tools that consider all the circuit el-
ements simultaneously, including the active devices,
the passive components, the radiation elements and
the package. The possibility of achieving this global
circuit modeling was demonstrated in [1]-[2].

Recently, a new category of orthogonal systems,
“orthogonal wavelets”, has appeared on the scene.
The wavelet expansion has proven to be an efficient
method in the approximation of functions. Different
classes of wavelets have been used to analyze the pas-
sive circuit components. For example, Daubechies
wavelets have been employed in [3] for the analysis of
microstrip floating structures. In [4] the wavelet ex-
pansion method based on periodical wavelets in con-
junction with the boundary element method has been
applied for the analysis of multiconductor transmis-
sion lines.

To achieve the desired global modeling approach,
we employed wavelet functions for modeling of ac-
tive semiconductor devices. In this paper we consider
the application of multiresolution analysis for semi-
conductor device modeling. The use of scaling func-
tions and wavelets as a complete set of basis functions
is called multiresolution analysis [5]. To derive a new
algorithm, the potential distribution inside the semi-
conductor and the electron and hole current densities

are represented by a two-fold expansion in scaling
functions and wavelets. Using only scaling functions
allows correct modeling of smoothly-varying electro-
magnetic fields and material parameters. In regions
with strong field variations additional basis functions
(wavelets) are introduced. In our derivations, we use
a special class of wavelets, namely the interpolating
wavelets. This wavelet system has already been ap-
plied to the solution of boundary problems for partial
differential equations (PDE). For this type of wavelets,
the evaluation of differential operators is simplified
due to the simple representations in terms of cubic
polynomial functions in the space domain.

Several different approaches for solving PDE using
wavelets have been considered. Jameson [6] used
wavelets for finding where to refine the grid in a fi-
nite difference method. It has been noticed by several
authors that nonlinear operators such as multiplication
are too computationally expensive when done directly
in a wavelet basis. There were several attempts to
deal with this problem. Keiser [7] has used Coif-
man wavelets to get approximations of point values
in a wavelet method, thus simplifying the treatment of
nonlinearities. In this paper we will follow the idea of
Hölmstrom [8] to deal with nonlinearities using the
so called Sparse Point Representation (SPR).

MODELING OF SEMICONDUCTOR DEVICES
USING INTERPOLATING WAVELETS

The idea behind using a wavelet basis is that cer-
tain functions are well compressed in such a basis. It
means that few basis functions are needed to repre-
sent a function with a small error. For example, con-
sider a function which is represented byN points on
a uniform grid, and the same function is represented,
with the same error�, byNs wavelet coefficients, for
Ns � N . We would like to be able to compute deriva-
tives and multiply functions in this wavelets basis in
O(Ns) time. The interpolating wavelet transform pro-
vides the means to achieve this goal. The chosen basis
has the property that each wavelet coefficient corre-
sponds to a function value at a grid point. This is a
key element of the method, since we have a fast algo-
rithm to move between the physical space, where the
computations are made and the wavelet space, where
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we choose the point to include in our SPR by thresh-
olding the wavelet coefficients.

Modeling of non-linear semiconductor devices e.g.
transistors or diodes produces functions (carrier con-
centrations and potential distribution) that are smooth
almost everywhere in the domain except in small re-
gions of sharp variations near p-n junctions. We would
like to use a nonuniform grid, which is fine around
sharp variation locations and coarse in areas where the
solution is smooth. Application of the SPR may give
us an opportunity to consider our grid as a dynamic
object which is fully integrated into the solution. A
nonuniform grid becomes fully adaptive. Changes in
the grid follow the changes in the solution on each
time step.

STATEMENT OF THE PROBLEM

The basic physical model consists of three cou-
pled partial differential equations: Poisson equation
for the electric field and two continuity equations for
electrons and holes. They are supplemented by the
expressions for the electron and hole current densi-
ties. Since the goal of this paper is to demonstrate
the wavelet’s potential and to simplify the analysis,
the drift-diffusion approximation is used in the current
density expressions. The mathematical model consists
of Poisson’s equation

r
2
U = �

q

�
(Nd �Na + p� n) (1)

The electron and hole carrier concentrations are found
from the continuity equations
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r � Jp = 0 (3)

and the electron and hole current densities

Jn = q�n(E)nE + qDnrn (4)
Jp = q�p(E)pE � qDprp (5)

It remains to specify boundary conditions for a par-
ticular geometry. Figure 1 shows a representative ex-
ample of a two dimensional crossection of a silicon
abrupt diode. The potential, and electron and hole car-
rier concentrations satisfy appropriate initial, bound-
ary and interface conditions. In general, there are
semiconductor/conductor interfaces (contacts), semi-
conductor/isolator interfaces and outside boundaries.

U

n+

U01

p - substrate

Fig. 1. Idealized crossection of a silicon abrupt diode.

In order to solve the drift-diffusion equations, it is
convenient to express all variables (the potential, the
electron and hole densities, current densities, electron
and hole mobilities) in terms of scaled quantities.

The spatial discretization is done by a scheme of
Scharfetter-Gummel type.

TRANSIENT SOLUTION

In scaled form, the basic semiconductor equations
can be written as

g1(U;n;p) = 0

g2(U;n;p) = 0 (6)
g3(U;n;p) = 0

where vectorsU;n;p are now the SPR of the normal-
ized electrostatic potential and carrier concentrations.

In our calculations we will follow the modified
Gummel iterations The resulting system of ODE can
be solved by the ODE solver. We use the fourth order
Runge-Kutta method for the solution.

The iterative procedure to solve the problem (6), can
be presented in seven steps:

1. Set initial values for the functionp andn and fix
a threshold value�.

2. Obtain SPR forp, n andU .
3. Solve the FD approximation of the Poisson’s

equationg1 and obtain SPR for the potential.
4. Make one step in the continuity equationg2 for
n using Runge-Kutta method and using the po-
tential from the previous step.

5. Repeat previous step in the continuity equation
g3 for p.

6. Update all SPRs.
7. Goto 2.
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The basic difficulty in the solution of the transient
system is the requirement that the numerical method
must be unconditionally stable.

NUMERICAL RESULTS

Example 1. Consider a siliconp � n junction in
Figure 2. The volume concentration of the implanted

N Na d

µ m

X
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p - region n  - region

-1 0 1mµ

Y

Fig. 2. Siliconp� n junction.

acceptorsNa = 5 � 1015cm�3, the volume concen-
tration of the implanted donorsNb = 1� 1015cm�3.
The resulting electron and hole concentrations for an
abrupt siliconp � n junction with zero external bias
are presented in the Figure 3. The potential distri-
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Fig. 3. Electron and hole carrier concentrations in a silicon
p� n junction.

bution is shown in Figure 4. Markers on the curves
show corresponding mesh points. We can see from
the figures that all components of the solution have
their own meshes. In case of the potential this mesh
is quite coarse. Numerical calculations show that we
need several hundred iterations(from 250 to 400) to
get a steady state solution of the equations. The num-
ber of iterations depends on the value of the thresh-
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Fig. 4. The potential distribution for an abrupt siliconp�n
junction at zero external bias.

old parameter�. As we have mentioned before, the
smaller parameter leads us to the finer mesh and more
iteration steps to reach the steady state.

Example 2Consider an abruptn+ � p diode in 2D
as you can see on the Figure 1. The structure is of
2�m � 2�m with contacts of length0:5�m on the
upper left and right of the device. The doping concen-
tration under the left contactNd = 1:482�1016 cm�3

(n-type region has a square shape of1�m � 1�). In
the substrate we assumeNa = 1:482 � 1015 cm

�3

(p-type). Figures 5 and 6 show us the distribution
of the electron concentration and the corresponding
mesh. The number of nodes in the mesh is414. Fig-
ures 7 and 8 show us the distribution of the hole
concentration and corresponding mesh. The number
of nodes in the mesh is327. The number of iter-
ations is about1000. The above meshes have been
adapted with the threshold parameter� = 10:0%. In
contrast, the full mesh of the uniform grid consists of
1089 nodes. The computations are compared to sim-
ulations results obtained with the full mesh in the re-
finement limit. The number of iterations in numerical
experiments was in the range of1000-5000 for differ-
ent values of the threshold parameter�.

Simulation results were compared also with the re-
sults from the ATLAS simulator. They are compara-
ble, though not exactly identical, due to the slightly
different physical parameters, like the intrinsic den-
sity, mobilities.
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Fig. 5. The electron concentration for a 2D abrupt diode
with zero external bias.
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Fig. 6. Grid points of the electron concentration for a 2D
abrupt diode with zero external bias.
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Fig. 7. The hole concentration for a 2D abrupt diode with
zero external bias.
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Fig. 8. Grid points of the hole concentration for a 2D
abrupt diode with zero external bias.
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